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P2T: Pyramid Pooling Transformer
for Scene Understanding

Yu-Huan Wu, Yun Liu, Xin Zhan, and Ming-Ming Cheng

Abstract—Recently, the vision transformer has achieved great success by pushing the state-of-the-art of various vision tasks. One of
the most challenging problems in the vision transformer is that the large sequence length of image tokens leads to high computational
cost (quadratic complexity). A popular solution to this problem is to use a single pooling operation to reduce the sequence length.
This paper considers how to improve existing vision transformers, where the pooled feature extracted by a single pooling operation
seems less powerful. To this end, we note that pyramid pooling has been demonstrated to be effective in various vision tasks owing
to its powerful ability in context abstraction. However, pyramid pooling has not been explored in backbone network design. To bridge
this gap, we propose to adapt pyramid pooling to Multi-Head Self-Attention (MHSA) in the vision transformer, simultaneously reducing
the sequence length and capturing powerful contextual features. Plugged with our pooling-based MHSA, we build a universal vision
transformer backbone, dubbed Pyramid Pooling Transformer (P2T). Extensive experiments demonstrate that, when applied P2T as
the backbone network, it shows substantial superiority in various vision tasks such as image classification, semantic segmentation,
object detection, and instance segmentation, compared to previous CNN- and transformer-based networks. The code will be released
at https://github.com/yuhuan-wu/P2T.

Index Terms—Transformer, backbone network, efficient self-attention, pyramid pooling, scene understanding

✦

1 INTRODUCTION

IN the past decade, convolutional neural networks (CNNs)
have dominated computer vision and achieved many

great stories [1]–[9]. The state-of-the-art of various vision
tasks on many large-scale datasets has been significantly
pushed forward [10]–[14]. In an orthogonal field, i.e., nat-
ural language processing (NLP), the dominating technique
is transformer [15]. Transformer entirely relies on self-
attention to capture the long-range global relationships and
has achieved brilliant successes. Considering that global in-
formation is also essential for vision tasks, a proper adaption
of the transformer [15] should be useful to overcome the
limitation of CNNs, i.e., CNNs usually enlarge the receptive
field by stacking more layers.

Lots of efforts are dedicated to exploring such a proper
adaption of the transformer [15]. Some early attempts use
CNNs [2], [4] to extract deep features that are fed into trans-
formers for further processing and regressing the targets
[16]–[18]. Dosovitskiy et al. [19] made a thorough success
by applying a pure transformer network for image classifi-
cation. They split an image into patches and took each patch
as a word/token in an NLP application so that transformer
can then be directly adopted. This simple method attains
competitive performance on ImageNet [10]. Therefore, a
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Fig. 1. Experimental results for semantic segmentation on the
ADE20K dataset [14]. Following PVT [21], Semantic FPN [26] is chosen
as the basic method, equipped with different backbone networks, includ-
ing ResNet [4], ResNeXt [27], PVT [21], Twins [28], Swin Transformer
[22], PVTv2 [29], and our P2T.

new concept of the vision transformer appears. In a very
short period, a large amount of literature has emerged
to improve the vision transformer [19], and much better
performance than CNNs has been achieved [20]–[25].

Nevertheless, there is still one challenging problem in
vision transformers, i.e., the length of the data sequence.
When viewing image patches as tokens, the sequence length
is much longer than in NLP applications. For example, in
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NLP, the well-known WMT2014 English-German dataset
[30] has 50M English words with 2M sentences, with an
average sequence length of 25. In contrast, in computer
vision, we usually use the image resolution of 224× 224 for
image classification on the ImageNet dataset [10], resulting
in the sequence length of 3136 if we use the common patch
size of 4× 4. Since the computational and space complexity
of Multi-Head Self-Attention (MHSA) in the transformer is
quadratic (rather than linear in CNNs) to the image size,
directly applying the transformer to vision tasks has a
high requirement for computational resources. To make a
pure transformer network possible for image classification,
ViT [19] uses large patch sizes, e.g., 16 and 32, to reduce
the sequence length, and achieves great success for image
classification. Later, many transformer works significantly
improve the performance of ViT [19] by introducing the
pyramid structure [20]–[24], [28], [31], [32], where the input
layer first uses the small patch size of 4×4 and the sequence
length is gradually reduced by merging adjacent image
patches.

To further reduce the computational cost of MHSA, PVT
[21] and MViT [23] use a single pooling operation to down-
sample the feature map in the computation of MHSA. With
the pooled features, they model token-to-region relationship
rather than the expected token-to-token relationship. Swin
Transformer [22] proposes to compute MHSA within small
windows rather than across the whole input, modeling local
relationships. It uses a window shift strategy to gradually
enlarge the receptive field, like CNNs, enlarging the recep-
tive field through stacking more layers [33]. However, an
essential characteristic of the vision transformer is its direct
global relationship modeling, which is also why we transfer
from CNNs to transformers.

Here, we consider how to improve PVT [21] and MViT
[23] where the pooled feature extracted by a single pooling
operation seems less powerful. If we can squeeze the input
feature into a powerful representation with a short sequence
length, we may achieve better performance. To this end,
we note that pyramid pooling [34]–[37] is a long-history
technique for computer vision, which extracts contextual
information and utilizes multiple pooling operations with
different receptive fields and strides onto the input fea-
ture map. This simple technique has been demonstrated
to be effective in various downstream vision tasks such
as semantic segmentation [37] and object detection [36].
Nevertheless, recent pyramid pooling approaches highly
rely on a pretrained CNN backbone, and thus they are
limited to a specific task. In another word, the pyramid
pooling technique has not been explored in the backbone
network design that has broad applications. Motivated by
this, we bridge this gap by adapting pyramid pooling to
the vision transformer block for simultaneously reducing
the sequence length and learning powerful contextual rep-
resentations. Pyramid pooling is also very efficient and thus
will only induce negligible computational cost for the vision
transformer.

We achieve this goal by proposing a new transformer
backbone network, i.e., Pyramid Pooling Transformer
(P2T). We adapt the idea of pyramid pooling to the com-
putation of multi-head self-attention (MHSA) in the vision
transformer, reducing the computational cost of MHSA

and capturing rich contextual information simultaneously.
By applying the new pooling-based MHSA, P2T exhibits
stronger ability in feature representation learning and visual
recognition than PVT [21] and MViT [23] which are based
on a single pooling operation. We evaluate P2T for vari-
ous typical vision tasks, like image classification, semantic
segmentation, object detection, and instance segmentation.
Extensive experiments demonstrate that P2T performs bet-
ter than all previous CNN- and transformer-based backbone
networks for these fundamental vision tasks (see Fig. 1 for
comparisons on semantic segmentation).

In summary, our main contributions include:

• We encapsulate pyramid pooling to MHSA, simul-
taneously reducing the sequence length of image
tokens and extracting powerful contextual features.

• We plug our pooling-based MHSA into the vision
transformer to build a new backbone network, i.e.,
P2T, making it flexible and powerful for visual recog-
nition.

• We conduct extensive experiments to demonstrate
that, when applied as a backbone network for var-
ious scene understanding tasks, P2T achieves sub-
stantially better performance than previous CNN-
and transformer-based networks.

2 RELATED WORK

2.1 Convolutional Neural Networks
Since AlexNet [1] won the champion in the ILSVRC-2012
competition [10], numerous advanced techniques have been
invented for improving CNNs, achieving many successful
stories in computer vision. VGG [2] and GoogleNet [3]
first try to deepen CNNs for better image recognition.
Then, ResNets [4] succeed in building very deep CNNs
with the help of residual connections. ResNeXts [27] and
Res2Nets [9] improve ResNets [4] by exploring its cardinal
operation. DenseNets [5] introduce dense connections that
connect each layer to all its subsequent layers for easing
optimization. MobileNets [38], [39] decompose a vanilla
convolution into a 1× 1 convolution and a depthwise sepa-
rable convolution to build lightweight CNNs for mobile and
embedded vision applications. ShuffleNets [40], [41] further
reduce the latency of MobileNets [38], [39] by replacing the
1 × 1 convolution with the grouped 1 × 1 convolution and
the channel shuffle operation. EfficientNet [7] and MnasNet
[42] adopt neural architecture search (NAS) to search for
optimal network architectures. Since our work focuses on
the transformer [15], a comprehensive survey of CNNs is
beyond the scope of this paper. Please refer to [43] and [44]
for a more extensive survey.

2.2 Vision Transformer
Transformer is initially proposed for machine translation in
NLP [15]. Through MHSA, transformer entirely relies on
self-attention to model global token-to-token dependencies.
Considering that global relationship is also highly required
by computer vision tasks, it is a natural idea to adopt trans-
former for improving vision tasks. However, transformer
is designed to process sequence data and thus cannot pro-
cess images directly. Hence, some researchers use CNNs to
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Fig. 2. Architecture of the proposed P2T network. We replace the traditional MHSA with our pooling-based MHSA. The feature maps
{B1,B2,B3,B4} can be used for downstream scene understanding tasks.

extract 2D representation that is then flattened and fed into
the transformer [16], [17], [45]–[47]. DETR [16] is a milestone
in this direction.

Instead of relying on the CNN backbone for feature
extraction, Dosovitskiy et al. [19] proposed the first vision
transformer (ViT). They split an image into small patches,
and each patch is viewed as a word/token in an NLP ap-
plication. Thus, a pure transformer network can be directly
adopted with the class token used for image classification.
Their method achieved competitive performance on Ima-
geNet [10]. Then, DeiT [48] alleviates the required resources
for training ViT [19] via knowledge distillation. T2T-ViT
[49] proposes to split an image with overlapping to better
preserve local structures. CvT [31] introduces depthwise
convolution for generating the query, key, and value in
the computation of MHSA. CPVT [50] proposes to replace
the absolute positional encoding with the conditional po-
sitional encoding via a depthwise convolution. Some ef-
forts are contributed to building the pyramid structure for
the vision transformer using pooling operations [20]–[23].
Among them, PVT [21] and MViT [23] first adopt the single
pooling operation to reduce the number of tokens when
computing MHSA. In this way, they actually conduct token-
to-region relationship modeling, not the expected token-
to-token modeling. Since this paper also resolves the long
sequence length problem through pooling, we adopt PVT
[21] and MViT [23] as strong baselines in this paper. Swin
Transformer [22] reduces the computational load of MHSA
by computing it within small windows. However, Swin
Transformer gradually achieves global relationship model-
ing by window shift, somewhat like CNNs that enlarge the
receptive field by stacking more layers [33]. Hence, we think
that Swin Transformer [22] sacrifices an essential character-
istic of the vision transformer, i.e., direct global relationship
modeling.

Different from PVT [21] and MViT [23] where the pooled
feature extracted by a single pooling operation seems less
powerful, we adapt the idea of pyramid pooling to the
vision transformer, simultaneously reducing the sequence
length and learning powerful contextual representations.
With more powerful representations, it is intuitive that
pyramid pooling may work better than single pooling for

computing self-attention in MHSA. Pyramid pooling is very
efficient and thus will only induce negligible computational
cost. Experiments show that the proposed P2T performs
substantially better performance than previous CNN- and
transformer-based networks. Besides, our design is also
compatible with other transformer techniques such as patch
embedding [51], positional encoding [50], and feed-forward
network [24], [52], [53].

2.3 Pyramid Pooling

In computer vision, pyramid pooling is a long-history and
widely-acknowledged technique for extracting feature pre-
sentations. Before the renaissance of deep CNNs [1], there
emerged several well-known works that applied pyramid
pooling for recognizing natural scenes [34], [35]. Inspired
by [34], [35], He et al. [36] introduced pyramid pooling to
deep CNNs for image classification and object detection.
They adopted several pooling operations to pool the final
convolutional feature map of a CNN backbone into several
fixed-size maps. These resulting maps are then flattened and
concatenated into a fixed-length representation for robust
visual recognition. Then, Zhao et al. [37] applied pyramid
pooling for semantic segmentation. Instead of flattening
in [36], they upsampled the pooled fixed-size maps into
the original size and concatenated the upsampled maps
for prediction. Their success suggests the effectiveness of
pyramid pooling in dense prediction. After that, pyramid
pooling has been widely applied to various vision tasks such
as semantic segmentation [37], [54]–[57] and object detection
[36], [58]–[60].

Unlike existing literature that explores pyramid pooling
in CNNs for specific tasks, we propose to adapt the concept
of pyramid pooling to the vision transformer backbone
network. With this idea, we first embed the pyramid pooling
into the basic pooling-based attention block of our P2T back-
bone, which can simultaneously reduce the sequence length
and learn powerful contextual feature representations. P2T
can be easily used by various vision tasks for feature rep-
resentation learning, while previous works about pyramid
pooling are limited to a specific vision task. Extensive ex-
periments on image classification, semantic segmentation,
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Fig. 3. Illustration of Pyramid Pooling Transformer. (a) The brief
structure of Pyramid Pooling Transformer. (b) The detailed structure of
the pooling-based MHSA.

object detection, and instance segmentation demonstrate
the superiority of P2T compared with existing CNN- and
transformer-based networks. Therefore, this work is distinc-
tive and would benefit the research on various vision tasks.

3 METHODOLOGY

In this section, we first provide an overview of our P2T
networks in §3.1. Then, we present the architecture of P2T
with pooling-based MHSA in §3.2. Finally, we introduce
some implementation details of our networks in §3.3.

3.1 Overview
The overall architecture of P2T is illustrated in Fig. 2.
With a natural color image as input, P2T first splits it into
H
4 × W

4 patches, each flattened to 48 (4 × 4 × 3) elements.
Following [21], we feed these flattened patches to a patch
embedding module, which consists of a linear projection
layer followed by the addition with a learnable positional
encoding. The patch embedding module will expand the
feature dimension from 48 to C1. Then, we stack the pro-
posed pyramid pooling transformer blocks that will be
introduced in §3.2. The whole network can be divided into
four stages with feature dimensions of Ci (i = {1, 2, 3, 4}),
respectively. Between every two stages, each 2 × 2 patch
group is concatenated and linearly projected from 4 × Ci

to Ci+1 dimension (i = {1, 2, 3}). In this way, the scales
of four stages become H

4 × W
4 , H

8 × W
8 , H

16 × W
16 , and

H
32 × W

32 , respectively. From four stages, we can derive four
feature representations {B1,B2,B3,B4}, respectively. Only
B4 will be used for final prediction for image classification,
while all pyramid features can be utilized for downstream
scene understanding tasks.

3.2 Pyramid Pooling Transformer
Pyramid pooling has been widely used in many scene un-
derstanding tasks collaborating with CNNs [36], [37], [61]–
[68]. However, existing literature usually applies pyramid

pooling on top of CNN backbones for extracting global
and contextual information for a specific task. In contrast,
this paper is the first to explore pyramid pooling in trans-
formers and backbone networks, targeting for improving
various scene understanding tasks generically. To this end,
we adapt the idea of pyramid pooling to the transformer,
simultaneously reducing the computational load of MHSA
and capturing rich contextual information.

Let us continue by introducing the proposed P2T, the
structure of which is illustrated in Fig. 3 (a). The input first
passes through the pooling-based MHSA, whose output is
added with the residual identity, followed by LayerNorm
[69]. Like the traditional transformer block [19], [21], [48], a
feed-forward network (FFN) follows for feature projection.
A residual connection and LayerNorm [69] are applied
again. The above process can be formulated as

Xatt = LayerNorm(X+ P-MHSA(X)),

Xout = LayerNorm(Xatt + FFN(Xatt)),
(1)

where X, Xatt, and Xout are the input, the output of
MHSA, and the output of the transformer block, respec-
tively. P-MHSA is the abbreviation of pooling-based MHSA.

3.2.1 Pooling-based MHSA
Here, we present the design of our pooling-based MHSA. Its
structure is shown in Fig. 3 (b). First, the input X is reshaped
into the 2D space. Then, we apply multiple average pooling
layers with various ratios onto the reshaped X to generate
pyramid feature maps, like

P1 = AvgPool1(X),

P2 = AvgPool2(X),

· · · ,
Pn = AvgPooln(X),

(2)

where {P1,P2, ...,Pn} denote the generated pyramid fea-
ture maps and n is the number of pooling layers. Next, we
feed pyramid feature maps to the depthwise convolution for
relative positional encoding:

Penc
i = DWConv(Pi) +Pi, i = 1, 2, · · · , n, (3)

where DWConv(·) indicates the depthwise convolution
with the kernel size 3 × 3, and Penc

i is Pi with the relative
positional encoding. Since Pi is the pooled feature, the
operation in Equ. 3 only has a little computational cost.
After that, we flatten and concatenate these pyramid feature
maps:

P = LayerNorm(Concat(Penc
1 ,Penc

2 , ...,Penc
n )), (4)

where the flattening operation is omitted for simplicity. In
this way, P can be a shorter sequence than the input X
if pooling ratios are large enough. Besides, P contains the
contextual abstraction of the input X and can thus serve as
a strong substitute for the input X when computing MHSA.

Suppose the query, key, and value tensors in MHSA [19]
are Q, K, and V, respectively. Instead of using traditional

(Q,K,V) = (XWq,XWk,XWv), (5)

we propose to use

(Q,K,V) = (XWq,PWk,PWv), (6)
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TABLE 1
Detailed settings of the proposed P2T. The parameters of building blocks are shown in brackets, with the numbers of blocks stacked. For the

first stage, we apply a 7× 7 convolution with C output channels and a stride of S for patch embedding. Each IRB uses an expansion ratio of E. For
simplicity, we omit the patch embedding operation, i.e., a 3× 3 convolution with a stride of S = 2, after the t-th stage (t = {2, 3, 4}). “#Params”

refers to the number of parameters. “#Flops” denotes the computational cost with the input size of 224× 224.

Stage Input Size Operator P2T-Tiny P2T-Small P2T-Base P2T-Large
1 224× 224 7× 7 conv. C = 48, S = 4 C = 64, S = 4

2 56× 56
P-MHSA

IRB

[
C = 48

E = 8

]
× 2

[
C = 64

E = 8

]
× 2

[
C = 64

E = 8

]
× 3

[
C = 64

E = 8

]
× 3

3 28× 28
P-MHSA

IRB

[
C = 96

E = 8

]
× 2

[
C = 128

E = 8

]
× 2

[
C = 128

E = 8

]
× 4

[
C = 128

E = 8

]
× 8

4 14× 14
P-MHSA

IRB

[
C = 240

E = 4

]
× 6

[
C = 320

E = 4

]
× 9

[
C = 320

E = 4

]
× 18

[
C = 320

E = 4

]
× 27

5 7× 7
P-MHSA

IRB

[
C = 384

E = 4

]
× 3

[
C = 512

E = 4

]
× 3

[
C = 512

E = 4

]
× 3

[
C = 640

E = 4

]
× 3

1× 1 - Global Average Pooling, 1000-d FC, Softmax
#Params 11.6M 24.1M 36.1M 54.5M
#Flops 1.8G 3.7G 6.5G 9.8G

in which Wq , Wk, and Wv denote the weight matrices of
linear transformations for generating the query, key, and
value tensors, respectively. Then, Q,K,V are fed into the
attention module to compute the attention A, which can be
formulated as below:

A = Softmax(
Q×KT

√
dK

)×V, (7)

where dK is the channel dimension of K, and
√
dK can

serve as an approximate normalization. The Softmax func-
tion is applied along the rows of the matrix. Equ. 7 omits
the concept of multiple heads [15], [19] for simplicity.

Since K and V have a smaller length than X, the
proposed P-MHSA is more efficient than traditional MHSA
[15], [19]. Besides, since K and V contains highly-abstracted
multi-scale information, the proposed P-MHSA has a
stronger capability in global contextual dependency model-
ing, which is helpful for scene understanding [36], [37], [62],
[65]–[68]. From a different perspective, pyramid pooling is
usually used as an effective technique connected upon back-
bone networks; in contrast, this paper first exploits pyramid
pooling within backbone networks through transformers,
thus providing powerful feature representation learning for
scene understanding. With the above analyses, P-MHSA
is expected to be more efficient and more effective than
traditional MHSA [15], [19].

Analysis of computational complexity. As described in
Equ. 2, the proposed pooling-based attention leverages sev-
eral pooling operations to generate pyramid feature maps.
The pyramid pooling operation only has negligible O(NC)
computational complexity, where N and C represent the
sequence length and the feature dimension, respectively.
Hence, the computational complexity for computing self-
attention can be formulated as

O(P-MHSA) = (N + 2M)C2 + 2NMC, (8)

where M is the concatenated sequence length of all pooled
features. For the default pooling ratios of {12, 16, 20, 24},
we have M ≈ N

66.3 ≈ N
82 , which is comparable with the

computational cost of MHSA in PVT [21].

3.2.2 Feed-Forward Network
Feed-Forward Network (FFN) is an essential component of
transformers for feature enhancement [15], [70]. Previous
transformers usually apply an MLP as the FFN [15], [19],
[21] and entirely rely on attention to capture inter-pixel
dependencies. Though effective, this architecture is not good
at learning 2D locality, which plays a critical role in scene
understanding. To this end, we follow [52], [53] to insert the
depthwise convolution into FFN so that the resulting trans-
former can inherit the merits of both transformer (i.e., long-
range dependency modeling) and CNN (i.e., 2D locality).
Specifically, we adopt the Inverted Bottleneck Block (IRB),
proposed in MobileNetV2 [39], as the FFN.

To adapt IRB for the vision transformer, we first trans-
form the input sequence Xatt to a 2D feature map XI

att:

XI
att = Seq2Image(Xatt), (9)

where Seq2Image(·) is to reshape the 1D sequence to a
2D feature map. Given the input XI

att, IRB can be directly
applied, like

X1
IRB = Act(XI

attW
1
IRB),

Xout
IRB = Act(DWConv(X1

IRB))W
2
IRB,

(10)

where W1
IRB, W2

IRB indicate the weight matrices of 1×1 con-
volutions, “Act” indicates the nonlinear activation function,
Xout

IRB is the output of IRB. Since Xout
IRB is a 2D feature map,

we finally transform it to a 1D sequence:

XS
IRB = Image2Seq(Xout

IRB), (11)

where Image2Seq(·) is the operation that reshapes the 2D
feature map to a 1D sequence. XS

IRB is the output of FFN,
with the same shape as Xatt.

3.3 Implementation Details

P2T with different depths. Following previous backbone
architectures [4], [21], [22], [24], [27], we build P2T with
different depths via stacking the different number of pyra-
mid pooling transformers at each stage. In this manner, we
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propose four versions of P2T, i.e., P2T-Tiny, P2T-Small, P2T-
Base, and P2T-Large with similar numbers of parameters to
ResNet-18 [4], ResNet-50 [4], ResNet-101 [4], and PVT-Large
[21], respectively. Each head of P-MHSA has 64 feature
channels except that each head has 48 feature channels in
P2T-Tiny. Other configurations for different versions of P2T
are shown in Table 1.

Pyramid pooling settings. We empirically set the number
of parallel pooling operations in P-MHSA as 4. At different
stages, the pooling ratios of pyramid pooling transform-
ers are different. The pooling ratios for the first stage are
empirically set as {12, 16, 20, 24}. Pooling ratios in each
next stage are divided by 2 except that, in the last stage,
they are set as {1, 2, 3, 4}. In each transformer block, all
depthwise convolutions (Equ. 3) in P-MHSA share the same
parameters.

Other settings. Although a larger kernel size (e.g., 5 × 5)
of depthwise convolution (in Equ. 3) can bring better perfor-
mance, the kernel size of all depthwise convolutions is set
to 3×3 for efficiency. We choose Hardswish [71] as the non-
linear activation function because it saves much memory
compared with GELU [72]. Hardswish [71] also empirically
works well. Same with PVTv2 [29], we apply overlapped
patch embedding. That is, we use 3 × 3 convolution with a
stride of 2 for patch embedding from the second to the last
stage, while we apply a 7× 7 convolution with a stride of 4
for patch embedding in the first stage.

4 EXPERIMENTS

We first introduce the experiments on image classification in
§4.1. Then we validate P2T’s effectiveness on several scene
understanding tasks, i.e., semantic segmentation, object de-
tection, and instance segmentation in §4.2, §4.3, and §4.4,
respectively. At last, we conduct ablation studies for better
understanding our method in §4.5.

4.1 Image Classification

Image classification is the most common task for evaluating
the capability of backbone networks. It aims to assign a class
label to each natural image input. Many other tasks build
on top of image classification via applying classification
networks as the backbones for feature extraction.

Experimental setup. As described in §3.1, only the output
feature B4 of the last stage is utilized here. Following regu-
lar CNN networks [4], [5], [9], we append a global average
pooling layer and a fully-connected layer on top of B4 to
obtain the final classification scores. We train our network
on the ImageNet-1K dataset [10], which has 1.28M training
images and 50k validation images. For a fair comparison, we
follow PVT [21] to adopt the same training protocols as DeiT
[48] (without knowledge distillation), which is a standard
choice for training vision transformers. Specifically, we use
AdamW [76] as the optimizer, with the initial learning
rate of 1e-3, weight decay of 0.05, and a mini-batch of
1024 images. We train P2T for 300 epochs with the cosine
learning rate decay strategy. Images are resized to the size
of 224×224 for training and testing. Models are warmed up

TABLE 2
Image classification results on the ImageNet-1K dataset [10].

“Top-1” indicates the top-1 accuracy rate. “*” indicates the results with
knowledge distillation [48]. “#P (M)” denotes the number of parameters

(M). Both the number of computational cost (GFlops) and running
speed (frames per second, FPS) are reported with the default

224× 224 input size for each network except that the speed of ViT-B
[19] is tested with the input size of 384× 384. FPS is tested on a single
RTX 2070 GPU. The results of the proposed P2T are marked in bold.

Method #P (M) ↓ GFlops ↓ Top-1 (%) ↑ FPS ↑
ResNet-18 [4] 11.7 1.8 68.5 1410
DeiT-Tiny/16* [48] 5.7 1.3 72.2 1212
ViL-Tiny [73] 6.7 1.3 76.7 441
PVT-Tiny [21] 13.2 1.9 75.1 608
PVTv2-B1 [29] 13.1 2.1 78.7 502
P2T-Tiny (Ours) 11.6 1.8 79.8 473
ResNet-50 [4] 25.6 4.1 78.5 483
ResNeXt-50-32x4d [27] 25.0 4.3 79.5 407
Res2Net-50 [9] 25.7 4.5 80.3 430
DeiT-Small/16* [48] 22.1 4.6 79.9 489
PVT-Small [21] 24.5 3.8 79.8 336
T2T-ViTt-14 [49] 21.5 5.2 80.7 305
Swin-T [22] 29.0 4.5 81.3 349
Twins-SVT-S [28] 24.0 2.9 81.7 439
ViL-Small [73] 25.0 4.9 82.4 187
PVTv2-B2 [29] 25.4 4.0 82.0 284
P2T-Small (Ours) 24.1 3.7 82.4 284
ResNet-101 [4] 44.7 7.9 79.8 288
ResNeXt-101-32x4d [27] 44.2 8.0 80.6 228
Res2Net-101 [9] 45.2 8.3 81.2 265
PVT-Medium [21] 44.2 6.7 81.2 216
T2T-ViTt-19 [49] 39.2 8.4 81.4 202
Swin-S [22] 50.0 8.7 83.0 207
ViL-Medium [73] 40.4 8.7 83.5 114
MViT-B-16 [23] 37.0 7.8 83.1 222
PVTv2-B3 [29] 45.2 6.9 83.2 189
P2T-Base (Ours) 36.1 6.5 83.5 182
ResNeXt-101-64x4d [27] 83.5 15.6 81.5 147
MViT-B-24 [23] 53.5 10.9 83.0 151
ViL-Base [73] 57.0 13.4 83.7 67
PVT-Large [21] 61.4 9.8 81.7 152
DeiT-Base/16* [48] 86.6 17.6 81.8 161
ViT-Base/16 [19] 86.6 17.6 77.9 49
Swin-B [22] 88.0 15.4 83.3 140
Twins-SVT-L [28] 99.2 14.8 83.3 143
PVTv2-B4 [29] 62.6 10.1 83.6 133
PVTv2-B5 [29] 82.0 11.8 83.8 120
P2T-Large (Ours) 54.5 9.8 83.9 128

for the first five epochs. The data augmentation is also the
same as [21], [48].

Experimental results. The quantitative comparisons are
summarized in Table 2. All models are trained and eval-
uated with the input size of 224 × 224 except that
we follow the official ViT [19] to train and evaluate
it with the input size of 384 × 384. P2T largely out-
performs regular CNN models like ResNets [4] and
ResNeXts [27]. For example, although the running time
of P2T-Tiny/Small/Base/Large is 2.98/1.70/1.58/1.15 times
that of ResNet-18/50/101 [4] and ResNeXt-101-64x4d
[27], the top-1 accuracy of P2T-Tiny/Small/Base/Large
is 11.3%/3.9%/3.7%/2.4% better than that of ResNet-
18/50/101 [4] and ResNeXt-101-64x4d [27], respectively.
As can be seen, our P2T also achieves superior results
compared with recent state-of-the-art transformer models.
For example, P2T-Small/Base/Large is 1.1%/0.5%/0.6%
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TABLE 3
Experimental results on the validation set of the ADE20K dataset

[14] for semantic segmentation. We replace the backbone of
Semantic FPN [26] with various network architectures. The number of
GFlops is calculated with the input size of 512× 512. FPS is tested on
a single RTX 2070 GPU. The results of P2T backbones are marked in

bold.

Backbone Semantic FPN [26]
#Param (M) ↓ GFlops ↓ mIoU (%) ↑ FPS ↑

ResNet-18 [4] 15.5 31.9 32.9 68
PVT-Tiny [21] 17.0 32.1 35.7 36
PVTv2-B1 [29] 17.8 33.1 41.5 30
P2T-Tiny (Ours) 15.4 31.6 43.4 31
ResNet-50 [4] 28.5 45.4 36.7 35
PVT-Small [21] 28.2 42.9 39.8 26
Swin-T [22] 31.9 46 41.5 26
Twins-SVT-S [28] 28.3 37 43.2 27
PVTv2-B2 [29] 29.1 44.1 46.1 21
P2T-Small (Ours) 27.8 42.7 46.7 24
ResNet-101 [4] 47.5 64.8 38.8 26
ResNeXt-101-32x4d [27] 47.1 64.6 39.7 20
PVT-Medium [21] 48.0 59.4 41.6 19
Swin-S [22] 53.2 70 45.2 18
Twins-SVT-B [28] 60.4 67 45.3 17
PVTv2-B3 [29] 49.0 60.7 47.3 15
P2T-Base (Ours) 39.8 58.5 48.7 16
ResNeXt-101-64x4d [27] 86.4 104.2 40.2 15
PVT-Large [21] 65.1 78.0 42.1 15
Swin-B [22] 91.2 107 46.0 13
Twins-SVT-L [28] 102 103.7 46.7 13
PVTv2-B4 [29] 66.3 79.6 48.6 11
PVTv2-B5 [29] 85.7 89.4 48.9 10
P2T-Large (Ours) 58.1 77.7 49.4 12

better than Swin Transformer [22] with fewer network
parameters and less computational cost. Although PVTv2
[29] has large improvement over PVT [21], our P2T-
Tiny/Small/Base/Large still have 1.1%/0.4%/0.3%/0.3%
improvement over PVTv2-B1/B2/B3/B4 [29] with fewer
parameters and less computational cost. P2T applies four
parallel pooling operations when computing self-attention,
still achieving competitive speed with PVTv2 [29]. ViL [73]
achieves competitive performance with P2T. Nevertheless,
the speed of ViL [73] is much slower than our P2T, and the
computational cost of ViL [73] is also much larger than P2T.
P2T also largely outperforms ViT [19] and DeiT [48] with
much fewer parameters, implying that P2T achieves better
performance without a large amount of training data and
knowledge distillation. Therefore, P2T is very capable for
image classification.

4.2 Semantic Segmentation
Given a natural image input, semantic segmentation aims at
assigning a semantic label to each pixel. It is one of the most
fundamental dense prediction tasks in computer vision.

Experimental setup. We evaluate P2T and its competitors
on the ADE20K [14] dataset. The ADE20K dataset is a chal-
lenging scene understanding dataset with 150 fine-grained
semantic classes. This dataset has 20000, 2000, and 3302
images for training, validation, and testing, respectively.
Following [21], [28], Semantic FPN [26] is chosen as the basic
method for a fair comparison. We replace the backbone of
Semantic FPN [26] with various network architectures. All
backbones of semantic FPN have been pretrained on the
ImageNet-1K [10] dataset, and other layers are initialized

using the Xavier method [77]. All networks are trained
for 80k iterations. We apply AdamW [76] as the network
optimizer, with the initial learning rate of 1e-4 and weight
decay of 1e-4. The poly learning rate schedule with γ = 0.9
is adopted. Each mini-batch has 16 images. Images are
resized and randomly cropped to 512 × 512 for training.
Synchronized batch normalization across GPUs is also en-
abled. During testing, images are resized to the shorter side
of 512 pixels. Multi-scale testing and flipping are disabled.
Following [21], we use the MMSegmentation toolbox [78] to
implement the above experiments.

Experimental results. Quantitative comparison results
are shown in Table 3. We compare our proposed P2T with
ResNets [4], ResNeXts [27], PVT [21], Swin Transform-
ers [22], Twins [28], and PVTv2 [29]. The results of each
network are from the official papers or re-implemented
using the official training configurations. Benefiting from
the pyramid pooling technique, the results of Semantic
FPN [26] with our P2T backbone are much better than
other CNN and transformer competitors. Typically, P2T-
Tiny/Small/Base/Large are 10.5%/10.0%/9.9%/9.2% bet-
ter than ResNet-18/50/101 [4] and ResNeXt-10-64x4d [27]
with fewer parameters and GFlops, respectively. Compared
with Swin Transformer [22] which introduces local self-
attention with transformers, P2T-Small/Base/Large achieve
5.2%/3.5%/3.4% improvement over Swin-T/S/B [22], re-
spectively, showing that global relationship modeling is
significant for visual recognition. Twins [28] combine the
local self-attention from Swin Transformers [22] and the
global self-attention from PVT [21]. As can be observed,
Twins [28] perform better than Swin Transformers [22], sug-
gesting that global self-attention is significant again. Unlike
Twins [28], we apply pure global self-attention via pyramid
pooling, learning richer contexts. P2T-Small/Base/Large
are 3.5%/3.4%/2.7% better than Twins-SVT-S/B/L [28],
respectively. PVTv2 [29] is the improved version of PVT
[21], serving as the strongest competitor for our P2T. P2T-
Tiny/Small/Base/Large are 1.9%/0.6%/1.4%/0.8% better
than PVTv2-B1/B2/B3/B4 [29], respectively. Besides, P2T-
Tiny/Small/Base/Large always have fewer parameters, less
computational cost, and faster speed than the corresponding
PVTv2-B1/B2/B3/B4 [29]. At last, we found that P2T-Tiny
is 3.2% better than ResNeXt-101-64x4d [27] with twice the
speed. Based on the above observations, we can conclude
that P2T is very capable for semantic segmentation.

4.3 Object Detection
Object detection is also one of the most fundamental and
challenging tasks for decades in computer vision. It aims to
detect and recognize instances of semantic objects of certain
classes in natural images. Here, we evaluate P2T and its
competitors on the MS-COCO [11] dataset.

Experimental setup. MS-COCO [11] is a large-scale chal-
lenging dataset for object detection, instance segmentation,
and keypoint detection. MS-COCO train2017 (118k im-
ages) and val2017 (5k images) sets are used for training
and validation in our experiments, respectively. RetinaNet
[74] is applied as the basic framework because it has been
widely acknowledged by this community [21], [22]. Each
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TABLE 4
Object detection results with RetinaNet [74] and instance segmentation results with Mask R-CNN [75] on the MS-COCO val2017 set
[11]. “R” and “X” represent the ResNet [4] and ResNeXt [27], respectively. The number of Flops is computed with the input size of 800× 1280.

FPS is tested on a single RTX 2070 GPU. The results of P2T backbones are marked in bold.

Backbone
Object Detection Instance Segmentation

#Param
(M) ↓

#Flops
(G)↓

#FPS
↑

RetinaNet [74] #Param
(M) ↓

#Flops
(G) ↓

#FPS
↑

Mask R-CNN [75]
AP ↑ AP50 AP75 APS ↑ APM APL APb ↑ APb

50 APb
75 APm ↑ APm

50 APm
75

R-18 [4] 21.3 190 19.3 31.8 49.6 33.6 16.3 34.3 43.2 31.2 209 17.3 34.0 54.0 36.7 31.2 51.0 32.7
ViL-Tiny [73] 16.6 204 4.2 40.8 61.3 43.6 26.7 44.9 53.6 26.9 223 3.9 41.4 63.5 45.0 38.1 60.3 40.8
PVT-Tiny [21] 23.0 205 10.7 36.7 56.9 38.9 22.6 38.8 50.0 32.9 223 10.0 36.7 59.2 39.3 35.1 56.7 37.3
PVTv2-B1 [29] 23.8 209 8.5 40.2 60.7 42.4 22.8 43.3 54.0 33.7 227 8.0 41.8 64.3 45.9 38.8 61.2 41.6
P2T-Tiny (Ours) 21.1 206 9.3 41.3 62.0 44.1 24.6 44.8 56.0 31.3 225 8.8 43.3 65.7 47.3 39.6 62.5 42.3
R-50 [4] 37.7 239 13.0 36.3 55.3 38.6 19.3 40.0 48.8 44.2 260 11.5 38.0 58.6 41.4 34.4 55.1 36.7
PVT-Small [21] 34.2 261 7.7 40.4 61.3 43.0 25.0 42.9 55.7 44.1 280 7.0 40.4 62.9 43.8 37.8 60.1 40.3
Swin-T [22] 38.5 248 9.7 41.5 62.1 44.2 25.1 44.9 55.5 47.8 264 8.8 42.2 64.6 46.2 39.1 61.6 42.0
ViL-Small [73] 35.7 292 3.4 44.2 65.2 47.6 28.8 48.0 57.8 45.0 310 3.2 44.9 67.1 49.3 41.0 64,2 44.1
Twins-SVT-S [28] 34.3 236 8.5 43.0 64.2 46.3 28.0 46.4 57.5 44.0 254 7.7 43.4 66.0 47.3 40.3 63.2 43.4
PVTv2-B2 [29] 35.1 266 5.8 43.8 64.8 46.8 26.0 47.6 59.2 45.0 285 5.4 45.3 67.1 49.6 41.2 64.2 44.4
P2T-Small (Ours) 33.8 260 7.4 44.4 65.3 47.6 27.0 48.3 59.4 43.7 279 6.7 45.5 67.7 49.8 41.4 64.6 44.5
R-101 [4] 56.7 315 9.8 38.5 57.8 41.2 21.4 42.6 51.1 63.2 336 9.1 40.4 61.1 44.2 36.4 57.7 38.8
X-101-32x4d [27] 56.4 319 8.5 39.9 59.6 42.7 22.3 44.2 52.5 62.8 340 7.9 41.9 62.5 45.9 37.5 59.4 40.2
PVT-Medium [21] 53.9 349 5.7 41.9 63.1 44.3 25.0 44.9 57.6 63.9 367 5.3 42.0 64.4 45.6 39.0 61.6 42.1
Swin-S [22] 59.8 336 7.1 44.5 65.7 47.5 27.4 48.0 59.9 69.1 354 6.6 44.8 66.6 48.9 40.9 63.4 44.2
PVTv2-B3 [29] 55.0 354 4.5 45.9 66.8 49.3 28.6 49.8 61.4 64.9 372 4.2 47.0 68.1 51.7 42.5 65.7 45.7
P2T-Base (Ours) 45.8 344 5.0 46.1 67.5 49.6 30.2 50.6 60.9 55.7 363 4.7 47.2 69.3 51.6 42.7 66.1 45.9
X-101-64x4d [27] 95.5 473 6.2 41.0 60.9 44.0 23.9 45.2 54.0 101.9 493 5.7 42.8 63.8 47.3 38.4 60.6 41.3
PVT-Large [21] 71.1 450 4.4 42.6 63.7 45.4 25.8 46.0 58.4 81.0 469 4.1 42.9 65.0 46.6 39.5 61.9 42.5
Twins-SVT-B [28] 67.0 376 5.1 45.3 66.7 48.1 28.5 48.9 60.6 76.3 395 4.6 45.2 67.6 49.3 41.5 64.5 44.8
PVTv2-B4 [29] 72.3 457 3.4 46.1 66.9 49.2 28.4 50.0 62.2 82.2 475 3.2 47.5 68.7 52.0 42.7 66.1 46.1
PVTv2-B5 [29] 91.7 514 3.2 46.2 67.1 49.5 28.5 50.0 62.5 101.6 532 3.0 47.4 68.6 51.9 42.5 65.7 46.0
P2T-Large (Ours) 64.4 449 3.8 47.2 68.4 50.9 32.4 51.6 62.2 74.0 467 3.5 48.3 70.2 53.3 43.5 67.3 46.9

mini-batch has 16 images with an initial learning rate of
1e-4. Following the popular MMDetection toolbox [79], we
train each network for 12 epochs, and the learning rate is di-
vided by 10 after 8 and 11 epochs. The network optimizer is
AdamW [76], a popular optimizer for training transformers.
The weight decay is set as 1e-4. During training and testing,
the shorter side of input images is resized to 800 pixels.
The longer side will keep the ratio of the images within
1333 pixels. In the training stage, only random horizontal
flipping is used for data augmentation. Standard COCO API
is utilized for evaluation, and we report results in terms
of AP, AP50, AP75, APS , APM , and APL metrics. APS ,
APM , and APL mean AP scores for small, medium, and
large objects defined in [11], respectively. AP is usually
viewed as the primary metric. For each metric, larger scores
indicate better performance. We also report the number of
parameters and the computational cost for reference.

Experimental results. The evaluation results on the MS-
COCO dataset are summarized in the left part of Table 4.
The results of other networks are from the official papers or
re-implemented using the official configurations. The below
discussion refers to the metric of AP if not stated. We can
observe that our P2T achieves the best performance under
all tiny/small/large complexity settings. For example, P2T-
Small achieves 2.9%, 1.4%, and 0.6% higher AP over Swin-
T [22], Twins-SVT-S [28], and PVTv2-B2 [29], respectively.
P2T-Tiny is 1.1% better than PVTv2 [29]. Compared with
ViL [73], P2T-Tiny/Small are 0.5% and 0.2% better than ViL-
Tiny/Small [73], respectively. Note that ViL [73] runs at a
much slower speed than P2T, as shown in Table 4. With
the base complexity setting, P2T-Base outperforms Swin-S

[29] by 1.0% and is 0.2% better than the best competitor
PVTv2-B3. With the large complexity setting, P2T-Large
achieves 1.1% and 1.9% better AP than PVTv2-B4 [29] and
Twins-SVT-B [28], respectively. At all complexity levels,
P2T always outperforms PVTv2 [29] with fewer network
parameters, less computational cost, and faster speed. P2T-
Tiny/Small/Base/Large are 9.5%/8.1%/7.0%/6.2% better
than ResNet-18/50/101 [4] and ResNeXt-101-64x4d [27],
respectively. Therefore, P2T is very capable for object de-
tection.

4.4 Instance Segmentation
Instance segmentation is another fundamental vision task. It
can be regarded as an advanced case of object detection by
outputting fine-grained object masks instead of bounding
boxes in object detection.

Experimental setup. We evaluate the performance of in-
stance segmentation on the well-known MS-COCO dataset
[11]. MS-COCO train2017 and val2017 sets are used
for training and validation in our experiments. Mask R-
CNN [75] is applied as the basic framework using different
backbone networks. The training settings are the same as
what we use for object detection in §4.3. We report evalua-
tion results for object detection and instance segmentation
in terms of APb, APb

50, APb
75, APm, APm

50, and APm
75 met-

rics, where “b” and “m” indicate bounding box and mask
metrics, respectively. APb and APm are set as the primary
evaluation metrics.

Experimental results. The comparisons between P2T
and its competitors are displayed in the right part of
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TABLE 5
Ablation studies on multiple pyramid pooling ratios. The “D ratio”
indicates the downsampling ratio between the initial sequence length

and the downsampled sequence length. “Top-1” denotes the top-1
classification accuracy rate on the ImageNet-1K validation set [10], and
“mIoU” indicates the results for semantic segmentation on the ADE20K

dataset [14].

No. Pooling Ratio(s) D Ratio ↑ Top-1 (%) ↑ mIoU (%) ↑
1 24 576 70.6 27.5
2 16 256 72.5 33.0
3 12 144 73.9 34.3
4 8 64 73.9 34.4
5 12, 24 115 74.4 34.8
6 12, 16, 20, 24 66 74.7 35.7

TABLE 6
Ablation studies for replacing single pooling operation with

multiple pooling operations at different stages. Since both stage 2
and 3 of our network only have two basic blocks, we merge them into
one choice. “Top-1” denotes the top-1 classification accuracy rate on

the ImageNet-1K validation set [10], and “mIoU” is the results for
semantic segmentation on the ADE20K dataset [14].

No. Stage # of Network Top-1 (%) ↑ mIoU ↑[2, 3] 4 5
1 73.9 34.4
2 ✔ 74.1 34.9
3 ✔ ✔ 74.5 35.5
4 ✔ ✔ ✔ 74.7 35.7

TABLE 7
Ablation studies on the choices of pooling operations. We can see
that other choices work worse than average pooling. “Top-1” indicates

the top-1 accuracy rate on the ImageNet-1K dataset [10] for image
classification. “mIoU” is the mean IoU rate on the ADE20K dataset [14]

for semantic segmentation.

Pooling Type Top-1 (%) ↑ mIoU (%) ↑
Average Pooling 74.7 35.7

Max Pooling 73.0 33.2
Convolution 73.8 35.5

Table 4. P2T achieves the best performance consistently
compared to existing CNN and transformer backbone net-
works. Compared with transformer-based backbones, P2T
achieves the best performance at all complexity levels. Re-
garding the bounding box metric APb, P2T-Small/Base are
3.3%/2.4% better than Swin-T/S [22], and P2T-Small/Large
are 2.1%/3.1% better than Twins-SVT-S/B [28]. P2T-
Tiny/Small/Base/Large are 1.5%/0.2%/0.2%/0.8% better
than PVTv2-B1/B2/B3/B4 [29] with fewer parameters, less
computational cost, and faster speed, respectively. In terms
of the mask metric APm, we also observe similar improve-
ments as observed using bounding box metrics. Compared
with ResNet-based backbones, P2T significantly outper-
forms ResNets [4] and ResNeXts [27] at all complexity
levels. It is also surprising that our lightest P2T-Tiny is 0.5%
and 1.2% better than ResNeXt-101-64x4d [27] in terms of
bounding box and mask metrics, respectively. Therefore,
P2T is very capable for instance segmentation.

TABLE 8
Ablation study on the fixed pooled size. GFlops is computed with an

input size of 512× 512 for the semantic segmentation model, i.e.,
Semantic FPN [26]. Memory (Mem) denotes the training GPU memory
usage for Semantic FPN [26] with a batch size of 2. “Top-1” and “mIoU”

indicate the top-1 classification accuracy on ImageNet-1K [10] and
segmentation mIoU on ADE20K [14], respectively.

Pooling Operation GFlops ↓ Mem (GB) ↓ Top-1 (%) ↑ mIoU (%) ↑
Fixed Pooled ratios 41.6 3.3 74.7 35.7
Fixed Pooled Sizes 38.9 2.9 74.4 33.3

4.5 Ablation Studies

Experimental setup. In this section, we perform ablation
studies to analyze the efficacy of each design choice in P2T.
We evaluate the performance of model variants on semantic
segmentation and image classification. Due to the limited
computational resources, we only train each model variant
on the ImageNet dataset [10] for 100 epochs, while other
training settings keep the same as in §4.1. Then, we fine-tune
the ImageNet-pretrained model on the ADE20K dataset [14]
with the same training settings as in §4.2.

Multiple pyramid pooling ratios. To validate the sig-
nificance of using multiple pooling ratios, we conduct
experiments to evaluate the performance of P2T with
one/two/four parallel pooling operations. The baseline is
P2T-Small without relative positional encoding, IRB, and
overlapping patch embedding. The results are shown in
Table 5. As can be seen, the single pooling operation with
a large pooling ratio (e.g., 16, 24) has a large squeezed
ratio for the sequence length. Still, it results in very poor
performance for both image classification and semantic seg-
mentation. However, when the single pooling operation is
with a pooling ratio ≤ 12, the performance will be saturated
if we further decrease the pooling ratio. When we adopt
two parallel pooling operations, even with a high squeezed
ratio, the performance still becomes better for both image
classification and semantic segmentation. When we have
four parallel pooling operations, we can derive the best
performance with the comparable squeezed ratio for the
pooling ratio of 8 (the setting in PVT [21]).

Significance of pyramid pooling for different stages. We
perform ablation studies of the pyramid pooling design of
P2T. for different stages. Since stage 1 only contains convo-
lutions for downsampling, we do not perform such ablation
study at stage 1. The baseline is same with the last ablation
studies. The pooling ratio of single pooling operation is set
to 8 for ensuring comparable downsampling ratios. Results
are shown in Table 6. We can observe pyramid pooling can
improve the performance at all stages. The performance
becomes higher when more stages are applied with multiple
pooling operations. From the results, the improvement on
applying multiple pooling operations on stage 4 (No. 3 of
Table 6) is larger than that on other stages (No. 2, 4 of
Table 6), because stage 4 has more basic blocks than the
summation of stage [2,3] and stage 5.

Pooling operation choices. We conduct experiments for
different pooling operations, as shown in Table 7. There are
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TABLE 9
Ablation study on the relative positional encoding (RPE), IRB, and

overlapping patch embedding (OPE). “Top-1” and “mIoU” indicate
the top-1 classification accuracy on ImageNet-1K [10] and

segmentation mIoU on ADE20K [14], respectively.

RPE IRB OPE Top-1 (%) ↑ mIoU (%) ↑
74.7 35.7

✔ 76.4 37.4
✔ ✔ 79.5 42.7
✔ ✔ ✔ 79.7 44.1

three typical choices, i.e., max pooling, depthwise convo-
lution, and the default average pooling. The kernel size of
depthwise convolution is the same as max/average pooling
to keep the same downsampling rate. It is obvious that
different pooling types do not affect the computational
complexity and they only affect the number of the param-
eters of the downsampling kernel. Regarding the results of
ImageNet classification accuracy [10] and ADE20K segmen-
tation mIoU [14], average pooling is much better than the
other two choices. Thus, we apply average pooling as the
default pooling choice.

Fixed pooled sizes. When using fixed pooling ratios, the
size of the pooled feature map will vary with the input
feature map. Here, we try to fix the pooled sizes as {1, 2, 3,
6} for all stages, using adaptive average pooling. The results
are shown in Table 8. Compared with our default setting,
about 10% of memory usage and 12% of computational
cost are saved. However, the top-1 classification accuracy
drops by 0.3%, and the semantic segmentation performance
is 2.4% lower. Hence, we choose to use fixed pooling ratios
rather than fixed pooled sizes.

Selection of activation functions. We use the Hardswish
function [71] for nonlinear activation to reduce GPU mem-
ory usage in the training phase. Typically, when we train
P2T-Small on ImageNet [10] with a batch size of 64, the
GPU memory usage of GELU [72] is 10.5GB, which is 3.6GB
(+52%) more than that of Hardswish [71]. We also find
that there is no significant accuracy decrease if we employ
Hardswish [71].

Other design choices. To validate the effectiveness of
other design choices like relative positional encoding, IRB,
and overlapping patch embedding, we add these compo-
nents one by one to the baseline. Experimental results are
shown in Table 9. As can be seen, relative positional encod-
ing has significant improvement for both image classifica-
tion and semantic segmentation. With large pooling ratios,
the pooled features would have small scales, so relative
positional encoding only needs negligible computational
cost (5M Flops for the input size of 224 × 224). An extra
depthwise convolution in the feed-forward network, i.e.,
IRB, also shows significant improvement, demonstrating the
necessity of the 2D locality enhancement. We further follow
[29] to add overlapping patch embedding, and 0.2%/1.4%
improvement is observed for image classification and se-
mantic segmentation, respectively.

5 CONCLUSION

This paper introduces pyramid pooling into MHSA for
alleviating the high computational cost of MHSA in the
vision transformer. Compared with the strategy of applying
a single pooling operation in MHSA [21], [23], our pooling-
based MHSA not only reduces the sequence length but
also learns powerful contextual representations simultane-
ously via pyramid pooling. Equipped with the pooling-
based MHSA, we construct a new backbone network, called
Pyramid Pooling Transformer (P2T). To demonstrate the
effectiveness of P2T, we conduct extensive experiments on
several fundamental vision tasks, including image classifica-
tion, semantic segmentation, object detection, and instance
segmentation. Experimental results suggest that P2T signif-
icantly outperforms previous CNN- and transformer-based
backbone networks.
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